The Photoelectron Spectra of Hexamethyltungsten and Pentamethyltantalum

By LEE GALYER and GEOFFREY WILKINSON

(Inorganic Chemistry Laboratories, Imperial College, London SW7 2AY)

and D. ROBERT LLOYD*

(Chemistry Department, University of Birmingham, P.O. Box 363, Birmingham B15 2TT)

Summary The He I and He II photoelectron spectra of an authentic sample of hexamethyltungsten and of pentamethyltantalum are consistent with octahedral symmetry for the former and D_{3h} symmetry for the latter;

the metal-to-carbon bonding appears to be mainly d and s in character with a little p contribution, and there is evidence for steric interaction between the methyl groups of WMe_s.

FOLLOWING a preliminary note,¹ later supplemented with details,² Cradock and Savage³ reported the He I photoelectron spectrum of what they believed to be hexamethyltungsten. The He I (21.2 eV) and He II (40.8 eV) spectra (Figure 1) of the authentic material, synthesised by a new route,⁴ are so different from the report of Cradock and Savage that we conclude that their spectrum is that of a different compound.

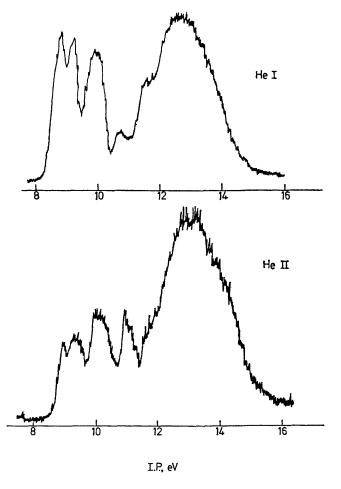


FIGURE 1. Photoelectron spectra of hexamethyltungsten, using He I (21.2 eV) and He II (40.8 eV) radiation.

By consideration of atomic ionization potentials and comparison with spectra of other methyls⁵[†] and dialkylamides⁶ the ionization region below 11 eV can be assigned to W-C bonding orbitals and that from 11 to 16 eV to C(2p)-H bonding orbitals. The band at 21 eV in the He II spectrum can be assigned to C(2s)-H bonding orbitals. The spectra are fully consistent with an octahedral WC₆ skeleton. Three distinct ionizations from W-C bonding orbitals are observed as expected for a_{1g} , e_g , and t_{1u} orbitals in O_h symmetry. The substantial splitting of the methyl C-H bonding region can also be rationalized by octahedral symmetry where there are only four distinct sets, t_{1g} , t_{2g} , t_{1u} , and t_{2u} . The splitting indicates that there is considerable steric compression of the methyl groups as in neopentane.⁵

Detailed analyses, and comparison with other species, will be presented later; here we note that increase of intensity of bands in the He II spectrum can be associated with metal dcharacter⁷ and that our analysis leads to the assignment of bands 1, 2, and 3 as t_{1w} , a_{1g} , and e_g respectively.

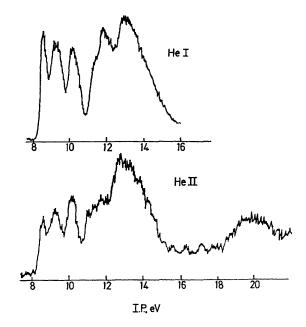


FIGURE 2. Photoelectron spectra of pentamethyltantalum, using He I (21.2 eV) and He II (40.8 eV) radiation.

For pentamethyltantalum⁸ (Figure 2) there are four bands in the M-C bonding region which correspond to orbital $1a'_1$, a''_2 , e', and $2a'_1$ of D_{3h} symmetry, as expected. All of these can have 5d character except a''_2 , which can only have 6p metal character. In contrast to WMe₆, the lower symmetry leads to a smearing out in the methyl C-H bonding region and only one band of indistinct structure occurs, though the overall width is similar to that in WMe₆.

For both TaMe₅ and WMe₆ there is evidence from the intensity changes in the spectra for a large contribution to the bonding from 5d orbitals. In WMe₆ the breadth of the a_{1g} ionization and sharpness of the t_{1u} ionization suggest that there is substantial 6s character but little 6p character in the bonding. A classical ' d^2sp^3 hybrid' does not seem an appropriate description. Because of symmetry-allowed s-d and p-d mixing in TaMe₅, detailed analysis is not possible but there seems to be no reason for the bonding to be greatly different from that in WMe₆. The i.p. of the

† Spectra of ReOMe₄ and ReMe₆ have also been obtained in collaboration with Dr. J. Green, Inorganic Chemistry Laboratories, Oxford.

C(2s)-H bonding orbital group, 20.8 eV, is intermediate between the i.p. of the corresponding orbitals in MeBr and MeCl;⁹ contrary to earlier deductions³ it seems that the electronegativity of W^{v1} is probably quite high.

We thank the donors of the Petroleum Research Fund of the American Chemical Society for support (L.G.).

(Received, 3rd April 1975; Com. 379.)

- ¹ A. J. Shortland and G. Wilkinson, Chem. Comm., 1972, 318.
 ⁸ A. J. Shortland and G. Wilkinson, J.C.S. Dalton, 1973, 872.
 ³ S. Cradock and W. Savage, Inorg. Nuclear Chem. Letters, 1972, 8, 753.
 ⁴ L. Galyer, K. Mertis, and G. Wilkinson, J. Organometallic Chem., 1975, 85, C37.
 ⁵ S. Evans, J. C. Green, P. J. Joachim, A. F. Orchard, D. W. Turner, and J. P. Maier, J.C.S. Faraday II, 1972, 68, 905; A. E. Jonas, G. K. Schweitzer, F. A. Grimm, and T. A. Carlson, J. Electron. Spectroscopy, 1972, 1, 29; H. Bock and B. G. Ramsey, Angew. Chem. Internat. Edn., 1973, 12, 734; J. H. D. Eland, Internat. J. Mass Spectrometry Ion Phys., 1970, 4, 37.
 ⁶ S. G. Gibbons, M. F. Lappert, J. B. Pedley, and G. J. Sharp, J.C.S. Dalton, 1975, 72.
 ⁷ M. F. Guest, I. H. Hillier, B. R. Higginson, and D. R. Lloyd, Mol. Phys., 1975, 29, 113.
 ⁸ R. R. Schrock and P. Meakin, J. Amer. Chem. Soc., 1974, 96, 5288.
 ⁹ A. W. Potts, H. J. Lempka, D. G. Streets, and W. C. Price, Phil. Trans. Roy. Soc. A, 1970, 268, 59.